field programmable gate arrays and embedded systems

Projects demonstrating this capability:

Adaptive Optics Retinal Imaging with Eye Tracking

The goal of this project with the Clinical and Translational Imaging Unit, NEI, is to design and integrate both closed-loop optical stabilization, using real-time retinal tracking, and image registration into an existing adaptive optics scanning light ophthalmoscope to improve image quality and reduce data loss due to eye motion.

Adaptive Optics Kit from Thorlabs

Electron Paramagnetic Resonance (EPR) Imaging of in-vivo Oxygen Status Associated with Cancer Treatment Studies

In this collaboration, EPR imaging technology is demonstrated to be a novel physiological imaging modality useful in obtaining maps of tissue oxygenation quantitatively and non-invasively with high spatial and temporal resolution. In vivo EPR imaging has been successfully implemented in small animal experiments, specifically in mouse models of human cancer to obtain information (e.g., dynamics of tumor physiology, hypoxia) critical for treatment selection (e.g., chemotherapy, anti-angiogenic drug therapy, and radiotherapy) and response monitoring.

EPR imaging system instrumentation

High-resolution Gamma Imager for Small Animal Imaging of Radioisotopes for Cancer Treatment

SPIS collaborated with NCI’s Molecular Imaging Program (MIP) to develop novel imaging systems used in the development of radionuclide-labeled compounds. Successfully developed radionuclide-labeled compounds offer the ultimate prospect of PET, SPECT and planar imaging in human subjects for medical diagnostic and management purposes.  Equally powerful applications exist in basic science when used for probe validation in small laboratory animals.

MONICA detector module and electronics

Large Scale Sensor-based System for Mouse Cage Environment Monitoring (MIOS)

Rodents are used in large numbers at research institutions aiming to understand mechanisms of disease and develop new therapies. To assess a research hypothesis or treatment efficacy, for example, the behavior and welfare of the animal must be monitored. Traditional methods for behavior assessment rely on trained staff specialists performing daily checks of each cage.  Given the large number of cages housed in each institution, these manual checks are laborious and susceptible to bias.

MIOS

PRiME - Physiological Recording in MRI Environment

A multidisciplinary intramural team led by CIT in collaboration with the NHLBI Cardiovascular Intervention Program developed and implemented a fundamental electronics and signal processing tool facilitating MRI catheterization procedure innovation.  As an alternative to surgical techniques in the treatment of cardiovascular disease, NHLBI is developing innovative techniques in cardiovascular catheterization with the use of real-time MRI. The use of MRI greatly reduces the patient’s exposure to ionizing radiation from X-ray imaging, which is typically used in catheterization procedures.

PRiME reduces MRI-induced noise in ECG and IBP signals

Technologies for Neuronal Mapping of Motion Detection and Color Vision Systems of Drosophila

SPIS has been collaborating with NICHD's section on neuronal connectivity and NIBIB to develop one-of-kind virtual-reality (VR) behavioral systems to assess the functions of Drosophila visual circuits. These VR systems are comprised of custom electronics, opto-electronics, imaging systems, mechanical hardware, and software. Since vertebrates share similar visual functions and neural circuit architectures, the research will provide a better understanding of how these systems receive, process, and interpret visual stimuli associated with motion and color.

VR motion detection prototype system

Tissue Microdissection for Molecular Analysis of Disease States and Normal Development – Target Activated Microdissection (TAM)

Laser Capture Microdissection (LCM) is a well-established technology used to isolate cells of interest from surrounding tissue cells on a microscope slide. As early co-inventors of LCM in the mid-90s, SPIS staff have continued to develop innovative tissue microdissection technologies, working with partners in NCI, NICHD, NIBIB, NIMH, NIDA, and industry.  Although LCM is already commercially successful, the method requires a skilled operator to select the cells for capture, which leads to operator variability and limits overall throughput.

Internal components of fTAM device